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N | Aim | P Weight Sharing Experiments
Traditional fusion approaches (early, mid-, and late fusion) do not
perform well on multimodal PET/CT data for lesion segmentation since
CT provides a very weak signal. We propose to combine multimodal ;lm jy | Lilﬁ'q@é L= E: Lf?—u_,j:ﬁ* Eﬁ" L%W 1S ? K= %ﬁ” =fﬂ—'FH£
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- (v3) is consistently best

> The bottleneck is the best layer to share - Voxel shuffling is the best task with the least variance

*Multimodal fission: Fusion followed by factorized or partitioned features.
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Comparison to Related Work

Qualitative Results
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Method Diceft | FPV ] | FNV | Tasks Multimodal Fission | Multi-task CT input PET input Ground Truth CT branch PET branch  Fusion |/ Bottleneck*
nnUNet [17] 62.75 2.83 1.59 Seg .
Blackbean [47] 63.15 253 1.76 Seg o

SF-Net [27] 61.21 3.44 2.95 Seg + Rec v’ 2
Andrearczyk et al. | 1] 61.45 2.98 1.89 Seg + Class v’ E‘
DeepMTS [31] 61.91 N2 2.76 Seg + Class v’ -
Weninger et al. [44] 01.22 3.98 2.82 Seg + Rec + Class v’

CT-only Mirror U-Net (v3) 12.37 | 28.24 | 50.02 | Seg + Rec + Class v’ i
PET-only Mirror U-Net (v3) || 56.14 4.81 3.02 | Seg + Rec + Class v’ T

Mirror U-Net (v4) 64.24 23 1.99 Seg v’ E

Valindria et al. [42] 39.84 7.89 17.00 Seg o >

(Ours) Mirror U-Net (v3) 65.91 159 0.76 Seg + Rec + Class v’ v’

FPV: False Positive Volume, FNV: False Negative Volume

(v2)-shuffle

Comparison to Traditional Fusion Strategies
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Metric Baselines Mirror U-Net (Ours) E

CT PET EF MF LF-Logit LF-U LF-n | (vl) (v2) (v3) Ablation (v4) '@*

Dice t | 26.00 6099 5489 55.53 57.41 59.80 21.60 | 64.57 6550 6591 64.24 -
FPV | | 1564 5.38 4.98 4.77 4.88 3.95 1.67 2.93 2.83 1.55 2:93

FNV ] | 44.15 2.15 3.13 12 2.88 301 9974 | 1.66 094 0.76 1.99 =

=

EF: Early Fusion, MF: Mid Fusion, LF: Late Fusion g

V Conclusion

 Traditional fusion methods do not utilize the information in the CT and lead to overfitting.
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